

Chemical Vapor Deposition of Coatings On Glass

J.W. McCamy

Acknowledgements:

Zhixun Ma, Ashtosh Ganjoo, Mingheng Li, Rajiv Tiwary, John Sopko, Sara Kopp (PPG Industries, Inc.)

A.M.B. van Mol, Mark Allendorf (Sandia National Laboratory)

Jason M. Kephart, Russell M. Geisthardt, W.S. Sampath (Colorado State University)

Victor V. Plotnikov, Alvin Compaan (Lucintech, Inc.)

The information in this presentation is provided "AS IS". PPG Industries does not warrant the performance, results, accuracy or comprehensiveness of this information nor its suitability for any use or for any actions taken or not taken based on any of the information provided in this presentation. In no event will PPG be liable for any claims or damages arising directly or indirectly from the use of this information.

Outline

- Materials and Coating Design for Architectural Applications
- Process and Equipment
- Deposition Mechanisms
- Materials and Coating Design for Solar Applications

Needs and wants Characteristics Constraints

Materials and Design for Architectural Applications

- Heat management
- Color / aesthetics

- Visible transmission
 - As high as possible
 - VLT ~ 75% (typ.)
- Heat management for architectural applications
 - Thermal
 - Solar control
- Reflection
 - Codes in many major cities specify <20%

Interactions with Electromagnetic Spectrum

Materials Design – Optical Response

• Fluorine doped SnO₂ (FTO, SnO₂:F)

Emissivity

For an object exposed to a thermal / blackbody source

Absorbed Energy = $\alpha_{\lambda} E_{b\lambda}(\lambda, T)$

Emitted Energy = $\varepsilon_{\lambda} E_{b\lambda}(\lambda, T)$

where ε_{λ} is the emissivity of the object at wavelength λ

Emissivity

At thermal equilibrium

Emitted Energy = *Absorbed Energy*

Leading to $\varepsilon_{\lambda} = \alpha_{\lambda}$ (Kirkoff's law)

Emissivity

The average emissivity then is

$$\bar{\varepsilon} = \frac{\int_0^\infty \varepsilon_\lambda E_{b\lambda}(\lambda, T) \, d\lambda}{\int_0^\infty E_{b\lambda}(\lambda, T) \, d\lambda}$$

Or (invoking Kirkoff's law)

$$\bar{\varepsilon} = \frac{\int_0^\infty \alpha_\lambda E_{b\lambda}(\lambda, T) \, d\lambda}{\int_0^\infty E_{b\lambda}(\lambda, T) \, d\lambda}$$

Where α_{λ} is (reasonably) measurable in the lab

Emissivity of Uncoated Glass

Bringing innovation to the surface.™

Emissivity of SnO₂:F Conductive Coating

Bringing innovation to the surface.™

pPG

Skin Depth (1/e) of Conductive SnO₂:F Coating

Bringing innovation to the surface.™

- Emissivity control
 - Coating thickness
 - Doping efficiency

Coating thickness (microns)

Bringing innovation to the surface.™

- Growth modes
 - Amorphous layers
 Flat interfaces
 - Crystalline / columnar growth
 - Crystal quality improves with increased thickness
 - Increased surface roughness

Heat transfer mechanisms

- Radiation transport

 thermal regime
 - Parallel surfaces

pPG

Radiative Heat Transfer through glass with and without passive low-e coating

Bringing innovation to the surface.™

Windows design for reduced heat transfer

- Heat transfer mechanisms
 - Convection
 - Conduction

Window Design

Heat transfer = $U * A * \Delta T$

Single pane clear glass U = 1.11

Type: Pyrolitic Low-E Clear Insulating Glass *"Sungate[®]"* 500 (2) Clear + Clear by PPG Industries, Inc.

Outdoor Lite: Clear Glass, Pyrolytic Coated on second surface (2) Indoor Lite: Clear Float Glass Low-E Coating: *"Sungate"* 500 (Pyrolitic) by PPG Industries, Inc. Location: Second Surface (2)

Insulating Glass Unit (IGU) window with CVD low-e coating reduces energy loss by 3X as compared with windows with single pane of glass

pPG

Window Design – resources

Publications Softw	are Facilities Site Map Staff Links H					
Choosing a Residential Win	ndow Specifying Fenestration Products Questions and Comments					
Windows & daylighting	Software Tools					
Glazing Materials	<u>WINDOW</u> for analyzing window thermal and optical performance					
Software	<u>THERM</u> for analyzing two-dimensional heat transfer through build					
Advanced Systems	Optics					
Window Properties	for analyzing optical properties of glazing systems					
Daylighting	International Glazing Database Optical data for glazing products used by WINDOW 5.2 a					
Residential Performance	Complex Glazing Database					
Commercial Performance	A database of shading materials and systems, such as rc to calculate thermal and optical characteristics of window					

http://windows.lbl.gov/software/

http://www.ppgideascapes.com/Glass/Tools-Resources.aspx

ppg		Scapes. Roatings • Paint	Glass	Metal Coatings	Paints	About Us	Contact Us	Request Samples	Q
Pr	oducts			Find a Fabricator	News	Education Center	Residential	Glass	
									1
	Home	/ Glass / Tools &	Technical Resour	rces					

Tools & Technical Resources

PPG is your source for information

PPG Architectural Glass offers a comprehensive set of tools and design resources to help architects, specifiers, fabricators and glaziers identify and work with the PPG glass products that best meet their projects' aesthetic and performance goals.

Tools

Search for glass types, construct IGUs, view glasses in 3-D and compare their energy and thermal stress performance results.

Design Resources

Find and explore information on sustainability, LEED® compliance and Cradle to Cradle^{CM} Certification. View our glass design guidelines and learn more about glass. Then check out our

Architectural Glass Specifications

Find a list of product performance characteristics for all PPG architectural glass products to help you compare and meet your design requirements.

Bringing innovation to the surface.™

- Color can be represented in L*a*b* space
 - Weighting functions in visual spectrum give
 - L* brightness
 - a* red/green axis
 - b* yellow/blue axis
- Customers want
 - Neutral ~ (0,0)
 - Blue-green (-a*, -b*)

- Optical response
 - Design of coating stack
 - Response often non-linear in color space

- Optical response
 - Add color suppression layer between high index (SnO2:F) and low index (glass)

Coating Design – Color Suppression Layer

- **Color suppression layer approaches**
 - Discrete H-L index layers
 - + $SnO_2 / SiO_2 / SnO_2 / SiO_2$
 - Homogenous intermediate index layer
 - + $Si_xSn_{(1-x)}O_{(2-\delta)}C_{\delta}$
 - Graded optical index
 - Mixed metal oxides

 - Si_xSn_(1-x)O₂ (x is a function of layer thickness)
 Si_xTi_(1-x)O₂ (x is a function of layer thickness)

pDG

Chemistry for CVD Coatings

- **Typical precursors** All are unsafe if not used properly!
 - SnO₂
 - + $Monobutyl tin trichloride (C_4H_9SnCl_3)$
 - Bibutyl tin dichloride ((CH₃CH₂CH₂CH₂)₂SnCl₂)
 - + Trimethyl tin $(C_4H_{12}Sn)$
 - F
- Hydrofluoric acid (HF)
- + Trifluoroacetic acid ($C_2HF_3O_2$)
- SiO₂
 - Tetraethyl orthosilicate (SiC₈H₂₀O₄ TEOS)
 - + Silane (SiH_4)
 - Monochlorosilane (SiClH₃)
- TiO₂
 - Titanium isopropoxide (C₁₂H₂₈O₄Ti)
 - + Titanium tetrachloride $(TiCI_4)$

pPG

Choosing a precursor – criteria to consider

- Safety
 - Toxic (acute, chronic exposure)
 - Flammable / pyrophoric
 - Asphyxiate (CO₂ vs N₂ vs NF₃)
- Compatibility with other precursors

 $2MCI_3 + 3H_2O \rightarrow 6HCI + MO_x + yO_2$

(~instantaneous, exothermic)

- Deposition efficiency within desired / allowable temperature regime
- Cost

Questions

Bringing innovation to the surface.™

Process and Equipment

Bringing innovation to the surface.™

Bringing innovation to the surface.™

Process & Equipment – coater location

- Float glass
 - 25 MM m²/yr per line

- Glass Temperature = 600-675°C
- Glass Speed = 5 to 15 meters/min.

- Online CVD coating
 - 10 MM m²/yr per line
- Efficient use of energy
 - Use existing energy content of the glass

Precursor flow system

Bringing innovation to the surface.™

Process & Equipment – precursor vaporization

- Liquid distributor fouling resistance (best to worst)
 - V-notch weir
 - Spray
 - Slotted weir
 - Sidewall orifice
- Packing types
 - Metal chips
 - Raschig rings
 - Pall rings

Process & Equipment – vaporizer operations

Bringing innovation to the surface.™

Process & Equipment – vaporizer operation

- What is the operating temperature for vaporization of MBTC
 - 36.5 lb/hr MBTC flow
 - 20 SCFM N₂

 $MW_{MBTC} = 282 \text{ lb / lb-mol}$ $N_2 \text{ std vol} = 386.7 \text{ SCF / lb-mol}$

MBTC concentration = 4%

 $T_{op} > 271 F$

If $T_{op} < 270F$ expect liquid into pot

Condensation temperature (F) of MBTC as a function of vapor phase concentration

Process & Equipment – vaporizer operation

 Souder-Brown equation predicts entrainment when velocity V in the vaporizer packed column is greater than V_G

Souder-Brown Eqn.

pPG

$$V_G = k \sqrt{\frac{\rho_L - \rho_G}{\rho_G}}$$

For packed column k = 0.175 ft/s

 $\rho_{\text{MBTC}} = 91.95 \text{ lb/ft}^3$ $\rho_{\text{vap}} = 0.0531 \text{ lb/ft}^3$

54.75 lb/hr MBTC 30 SCFM N₂ T=300 F

12 tubes (1-1/4" sch 10) ID = 1.442"

 $V_{vap+chem} = 5.49 \text{ ft/s}$ $V_G = 4.93 \text{ ft/s}$

Entrainment is expected \rightarrow "coater drip"

Process & Equipment – basic coater design

Single inlet and exhaust

Process & Equipment – basic coater design

 Inlet paired with 2 exhausts with flows both upstream & downstream

Flows and temperatures under coater

Deposition mechanism

$$J = \frac{c_g}{\delta/D + 1/k_s}$$

2 mechanisms: (1) mass transport, (2) reaction at surface

Bringing innovation to the surface.™

Deposition Mechanism

C

$$J = \frac{c_g}{\delta/D}$$
$$\delta(x) \propto \sqrt{x/u}$$

$$\propto \sqrt{x/u}$$

$$J = C_g k_s = C_g e^{-E/kT}$$
$$T = F(x)$$

Bringing innovation to the surface.™

pþG

pPG

SnO₂ deposition from MBTC

Inlet slot Exhaust Exhaust slot slot 70 experiment 2nd order upwind 60 **9**8-8-8-8₆ **Deposition of SnO**₂ 10 Is transport controlled 0∟ -2.5 -2 -1.5 -0.50.5 1.5 2 2.5 -1 0 1 x (inch)

Stationary glass experiment

Bringing innovation to the surface.™

Addition of H₂O to precursor stream

- Stagnate flow reactor experiments (PPG & LBNL studies)
- Change from reaction control to transport control for T > 375C
- Addition of H₂O accelerates the reaction

Deposition mechanism – mass transport

- For N slots with
 - L = the length between inlet and exhaust
 - u = velocity of vapor
 - x = distance from inlet
 - v = velocity of glass

 C_g = concentration of chemistry far from the surface

We can write for the coating thickness h

$$h \propto \frac{N \int_0^L \left(c_g \sqrt{\frac{u}{x}} \right) dx}{v} \propto \frac{N \cdot c_g \cdot u^{1/2} \cdot L^{1/2}}{v}$$

Deposition mechanism – mass transport

But $u \propto \frac{\dot{m_0}}{N \cdot H}$ $c_g \propto \frac{\dot{m_1}}{\dot{m_0}}$

Where

 \dot{m}_0 = total mass flow rate (precursor + carrier gas)

- $\dot{m}_1 =$ precursor flow rate
 - H = coater height above the glass

Such that...

$$h \propto \sqrt{N \cdot L} \cdot \frac{\dot{m_1}}{\sqrt{\dot{m_0}}} \cdot \frac{1}{\sqrt{H}} \cdot \frac{1}{v}$$

Deposition mechanism – mass transport

Similar to the mass transport case

$$J = C_{g}e^{-E/kT}$$

$$h \propto \frac{\dot{m}_1}{\dot{m}_0} \frac{e^{-E/kT}}{T} \frac{L}{\nu}$$

Materials and Design

- Low maintenance coatings ("self cleaning")
 - TiO₂
 - Low surface energy when clean – hydrophilic
 - Wide bandgap semiconductor – produces e-h pairs with UV

Sheet Action

pPG

Same deposition mechanism as SnO_2 ?

Design of Experiments – ask what controls thickness

Mass transport controlled **Reaction controlled** • $e^{-E/kT}$

 $\dot{m_1}$

 $\sqrt{\dot{m}_0}$

•

Thickness	\dot{m}_0	н	т
h_1	$\dot{m}_0(1)$	H(1)	T(1)
h_2	$\dot{m}_{0}(2),\dot{m}_{0}(2')$	H(2)	T(2)
h ₃	\dot{m}_0 (3)	H(3)	T(3)

 \dot{m}_1

 \dot{m}_0

Т

TiO2 deposition from titanium isopropoxide

- Online experiments
 - Deposition is mass transport controlled
 - Knowledge of mechanism guides process efficiency improvements

$$\eta = \mathcal{F}(\dot{m}_0, \dot{m}_1, \dot{m}_2, H)$$

Questions

Bringing innovation to the surface.™

Materials and Design for Solar Applications

 $TCO \rightarrow Transparent Conductive Oxide$

Bringing innovation to the surface.™

Challenges for Solar Applications

Drivers for Technology Development

- Focus on \$/W_p and Levelized Cost of Electricity
- Energy efficient manufacturing
- Device performance
 - Optimize for device and application

Durable

- Long term optical performance
- Mechanically durable

pVG

Glass and Coated Glass for Thin Film PV Maximizing Performance is a Multi-factor Optimization

Current (mA) vs Voltage (V) (measured)

 $\mathbf{J}_{\mathrm{sc}}\mathbf{:}$ Light management design

- V_{oc}: TCO materials / interface
- FF: TCO morphology

- Interface morphology is critical to control light path through active layers
- Rough typically used for thin film Si (above)
- Smooth needed for thin film CdTe

Design of High Performance Superstrates TCO Coating Designs

In general electrical and optical properties of the TCO cannot be specified separately

Bringing innovation to the surface.™

Materials and Design

Impact of conductivity on PV performance

Bringing innovation to the surface.™

pPG

Engineering of the Bulk TCO to Reduce Optical Losses

Root causes of losses

- 1. Intrinsic absorption
- 2. Free carriers

$$\lambda_p = \frac{2\pi c}{\omega_p} = 2\pi c \sqrt{\frac{\varepsilon_o \varepsilon_\infty m^*}{ne^2}}$$

- 3. Bandgap
- Materials engineering and design
 - Film quality
 - Increase Permittivity
 - Increase Mobility
 - Increase Bandgap

Materials Engineering – reducing optical losses

- Alloying of SnO₂ matrix to modify permittivity
- Electrical properties comparable to SnO₂:F
- Optical properties comparable to undoped material

pPG

Light Redirection by Morphology Engineering

Increased optical path length through PV active layer

Morphology Design – Tandem α -Si PV

- What is optimal crystal size for maximizing scattering in region of interest?
 - Small sized

Mie scattering

- SnO₂/Si interface
 Optical indices
- Ensemble of sizes form of distribution

statistics

Morphology Design Determination of form of Distribution

- Consider an ensemble of grains with distribution G
- Determination of form is difficult in *R* space – map into Fourier
 space

Grain Size Distribution Scales and is Lognormal

Optimization of Grain Size / Morphology Scattering amplitude vs. wavelength for different sizes of scattering features (SnO₂/Si interface)

- Distribution of sizes (lognormal, σ=20% of μ)
- For structures in Si, calculations indicate long length scale features should be ~0.2μm

Red is high scattering Dark green is low scattering

Optical Wavelength (µm)

Interface Design – CdTe

Buffer layers

- Typically *i*-SnO₂ or in the ZnO-SnO₂ system
- Very high resistance (1000+ Ω-cm)

pPG

Bringing innovation to the surface.™

Device Performance with Buffer Layer

- Device structure
 - 50 nm CdS
 - 850 nm CdTe

Process

- Magnetron sputtering
- Low substrate temp

Results

HRT1 increased efficiency increased process robustness

Zhixun Ma¹, James McCamy¹, Jason M. Kephart², Russell M. Geisthardt², W.S. Sampath², Victor V. Plotnikov³, and Alvin Compaan³

¹PPG INDUSTRIES, INC., CHESWICK, PA 15024 USA; ²PHOTOVOLTAICS MANUFACTURING LABORATORY, DEPARTMENT OF MECHANICAL ENGINEERING, COLORADO STATE UNIVERSITY, FORT COLLINS, CO 80523 USA; ³LUCINTECH INC. TOLEDO, OH 43607

Function of the Buffer Layer – Two Hypothesis

- Buffer layer reduces the number of shunts
 - Surface energy of the buffer material changes the CdS growth mode
 - CdS morphology has fewer pinholes for shunts

- Buffer layer modifies the band alignment
 - Material's properties and / or interface states create barriers
 - Barriers reduce Voc of device

Summary

- CVD is effective technique for large area high volume production of low-E coatings that reduce transport of thermal radiation
 - Control of emissivity
 - Color and aesthetics
- CVD can produce TCO coatings for thin film PV applications
 - Engineering of interface roughness and band alignment
 - Materials and stack design for control of electrical and optical properties
- Process and equipment design
 - Robust process and equipment
 - Design of process through basic materials properties
 - Mass transport or reaction control of deposition

թԵն

ARTICLE COPYRIGHT LICENSE

PPG Industries, Inc. (hereinafter referred to as "PPG") owns and retains ownership rights of the substance of the instruction materials entitled:

"Chemical Vapor Deposition of Coatings On Glass"

(hereinafter referred to as "Presentation") and reserves all of the rights to publish the information therein. Upon acceptance of the Presentation for use and publication, Lehigh and Pennsylvania State Universities (hereinafter individually and collectively referred to a "Publishers") are granted a free license to publish and reproduce all of any part of the Presentation, as well as to grant free sublicenses to authorize reprints, translations, photocopies, microfilming, indexing, and abstracting, in both print and database formats, by third parties. The copyright notice to be used with the Presentation and on all copies thereof must indicate PPG's ownership of the Presentation and may reflect the Publishers' licensed rights as well.

PPG Industries, Inc.

Mehran Arbab Director, Glass Science & Technology February 24, 2015